

EACVI European Association of Cardiovascular Imaging

Valves: Anatomy/Pathology assessment

Dr Mark Westwood Consultant Cardiologist

EACVI European Association of Cardiovascular Imaging

Conflict of interest

I am a founder/director of MycardiumAI (for corelab work)

Introduction

- 1) The syllabus/curriculum
- 2) The reality check
- 3) Let's do some valves......

EACVI European Association of Cardiovascular Imaging

6.1 Normal valve anatomy

6.2. Basic physiological and pathophysiological principals and CMR sequences

1/ CMR sequences for analyzing valve morphology, quantifying flow, chambers volumes and function (see also section 1 and 3)
2/ Normal valve flow profiles
3/ Aetiology of valve stenosis and regurgitation

4/ Flow patterns of stenosis and regurgitation

5/ Anatomic area, continuity equation and pressure gradients estimation in the assessment of stenosis severity

6/ Severity indices for valve regurgitation assessment

7/ Impact of valve diseases on heart chamber geometry, volumes, function, mass.

8/ Complementary evaluation of the great vessels

9/ Diagnostic accuracy, strengths and weaknesses in comparison with echocardiography, catheterization and computed tomography

6.3. Assessment of Valve Stenosis

- 1/ Assessment of mechanisms and aetiology
- 2/ Flow jet origin and orientation/direction
- 3/ Strengths, difficulties and limitations: Methods of quantification of stenosis severity
- 4/ Specific issues for aortic valve stenosis
 - LVOT assessment
 - Assessment of LV remodeling: volumes, function, wall thickness and mass, LGE fibrosis patterns
 - Methods and clinical impact of diastolic function
 - Detection/significance of associated LVOT obstruction

EACVI European Association of Cardiovascular Imaging

 Relation between aortic and pulmonary outflow anatomy for aortic valve implantation (TAVI)

5/ Specific issues for sub & supravalvular aortic stenosis

- •Type and localization of stenosis
- •LVOT morphology and size (subvalvular). Aortic root and ascending aorta morphology and size (supravalvular)
- Differentiation of valve stenosis from sub- and supra-valvular stenosis
- 6/ Specific issues for mitral valve stenosis
 - Significance of left atrium size and RV remodeling.
 - Left atrial thrombus diagnosis
 - Tricuspid and pulmonary valve function
- 7/ Specific issues for pulmonary stenosis (see Congenital Heart Disease section)
- 8/ Specific issues for tricuspid valve stenosis
 - •Significance of right atrium size.
 - Venae cavae dimensions

EACVI European Association of Cardiovascular Imaging

6.4. Assessment of Valve Regurgitation

- 1/ Assessment of the mechanisms and aetiology
- 2/ Regurgitant jet origin and orientation/direction
- 3/ Strengths, difficulties and limitations of the methods of
- quantification of the regurgitation severity
- 4/ Specific issues for mitral regurgitation
 - LV geometry, function and late gadolinium enhancement in the mechanism of regurgitation
 - •Left atrium size, right heart chambers & valves.
 - CMR findings and selection of patients for intervention or surgery
- 5/ Specific issues for aortic regurgitation
 - •LV remodeling: volumes, function, thickness and mass
 - Importance of the complementary study of aorta
 - CMR findings and selection of patients for surgery
- 6/ Specific issues for tricuspid regurgitation
 - Significance of right atrium size and RV remodeling
 - Venae cavae dimensions
- 7/ Specific issues for pulmonary regurgitation
 - Assessment of RVOT, pulmonary artery, RV remodeling
 - CMR findings and selection of patients for intervention

6.5. Prosthetic heart valves

1/ Specific morphology and signal characteristics for valve prosthetic annulus, biological and mechanical prosthetic valves

2/ Normal and abnormal SSFP flow patterns

3/ CMR and its clinical role in the evaluation of prosthetic heart valves

Reality check, pt 1:

The best test for assessing valves is:

Reality check, pt 2:

There are only 4 valves!!!!!!

The Aortic Valve The Mitral Valve The Tricuspid Valve

The Pulmonary Valve

Reality check, pt 2:

European Association of Cardiovascular Imaging

A valve can only do 2 things!!!!

EACVI European Association of Cardiovascular Imaging

So only 2 things can go wrong!!

Reality check, pt 4:

EACVI European Association of Cardiovascular Imaging

Reality check, pt 4:

EACVI European Association of Cardiovascular Imaging

Reality check, pt 4:

Again very rare:	ſ
Congenital causes	
Drug abusers	
Aortic Stenosis	
Mitral Stenosis	
Tricuspid Stenosis	
Dulmonony Stonasia	

3tenosis

Funnonary

make it easier still!!!!!

Aortic Regurgitation

Mitral Regurgitation

Tricuspid Regurgitation

Pulmonary Regurgitation

Tricuspid regurgitation:

EACVI European Association of Cardiovascular Imaging

Ebsteins Anomaly:

Tobler D. et al. Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY

Carcinoid:

Serotonin related: Flushing Diarrhoea Abdominal Pain Bronchospasm Nausea/Vomiting Restrictive cardiomyopathy

The final 3.....

Aortic Stenosis

Aortic Regurgitation Mitral Regurgitation

Reality check, pt 5:

Basic principles.....

Long asymptomatic phases Risk of infection (endocarditis) Untreated endocarditis – 100% mortality Echo first line in nearly all cases Treatment Replace Repair

Symptoms

Indefinite	Asymptomatic
5 Years	Angina
3 Years	Syncope
2 Years	Cardiac Failure
	Death

Severity

Mean gradient across valve >40mmHg is the key Aortic valve area Planimetry Valve area <1.0cm² Also asses left ventricular function

Reality check, pt 5:

EACVI European Association of Cardiovascular Imaging

Flow mapping

Reality check, pt 5:

There are 2 ways to assess valves:

Differential stroke volumes

 Single valve lesion only
 Regurgitation only

 Flow mapping

 Multiple lesions
 Stenosis and regurgitation

Flow mapping:

On-phase spins Spin magnetisation vectors are in the same position (zero angle between vectors)

Off-phase spins Spin magnetisation vectors have different positions (non zero angle between vectors)

Cardiovascular Imaging Encoding gradient moving Δφ spins Phase shift stationary spins ESC Courtesy, Redha Boubertakh

Flow mapping: Phase shift Effects

Flow mapping: Phase shift Effects

When using bipolar gradient, stationary tissue (spins) acquire no net phase shift ($\Delta \phi = 0$)

Moving spins (blood) acquire a non zero phase shift: $\Delta \phi \propto$ (velocity of spins)

Phase contrast imaging there is a known relationship between v (velocity) Δφ phase angle

Flow mapping: Pulse sequences

Quantitative velocity mapping

Fast gradient echo (GRE) / spoiled gradient echo

2D velocity encoding Slice select direction Through plane flow

Can do in plane flow with gradients applied to appropriate axis Can also do full 3D velocity encoding/4D flow

Flow mapping: Pulse sequences

Biploar gradients added to normal imaging sequence Repeat experiment twice

Reversed gradients

Subtract signals from each other

Now will visualise **only moving spins**

EACVI

European Association of

RF

Gelice

G_{free}

G_{phase}

Flow mapping: Pulse sequences

Relationship between velocity and phase Set/adjusted by 'VENC'

VENC

Maximum blood flow that will be correctly encoded by the sequence Gradient amplitude/duration scanner calculates from selected VENC

Flow mapping: Velocity encoded images

European Association of Cardiovascular Imaging

Magnitude image

Velocity image (flow)

Flow mapping: Velocity encoded images

Flow mapping: Velocity encoded images

Phase images are used to measure velocity/flow

Flow mapping: Flow quantification

EACVI

Contour propagation through all cardiac phases

Flow mapping: Aliasing

EACVI European Association of Cardiovascular Imaging

Flow mapping: Aliasing

EACVI

Flow mapping: Aliasing

EACVI European Association of Cardiovascular Imaging

Flow mapping: VENC Scout

EACVI European Association of Cardiovascular Imaging

Flow mapping: Planning

EACVI European Association of Cardiovascular Imaging

Flow mapping: Accuracy

EACVI European Association of Cardiovascular Imaging

Spatial resolution

Must have sufficient pixels in area of interest

16 voxels for 10% accuracy

Remember it's the acquired not reconstructed voxel size!!

Temporal resolution

At least 60-70ms for pulsatile flow (everything!)

Higher resolution

Free breathing with multiple signal averages

Flow mapping: Crib sheet

EACVI European Association of Cardiovascular Imaging

Through plane Perpendicular

Gradient echo Bipolar

Peak gradient slightly < VENC

Frame rate 50-70ms per frame

Free breathing with multiple signal averages

Severity

Flow mapping Peak gradient mmHg=4*v² VENC to avoid aliasing

Always underestimates cf Doppler

Severity

EACVI European Association of Cardiovascular Imaging

Severity

Aortic Regurgitation

Aortic Regurgitation

EACVI European Association of Cardiovascular Imaging

ESC

AFR APR RFF 124

Myerson et al, Circulation 2012

Mitral Regurgitation

And Finally.....

Prosthetic Valves

Prosthetic Valves

Can assess – more qualitative cf quantitative All safe at 1.5T and 3.0T

Bioprosthetic easier to assess

Echo best test

Can assess peak velocity but always underestimates

Regurgitant fraction and >33% for severe AR

Always look for other things to give diagnosis

Alaising

Mitral valve

A1-3 P1-3

Conclusion

EACVI European Association of Cardiovascular Imaging

- 1) The syllabus/curriculum
- 2) The reality check
- 3) We've done some valves......

